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Abstract

(PhS}CLi adds with a total -ido selectivity onto 30-benzyl-1,20-isopropylidene- -D-xylo-dialdose2, open-
ing the way to the most efficient preparation of 1,2,49racetyl-30-benzyldi -iduronyl synthorB. Alternatively,
in view of combinatorial syntheses, aldehy&lallows a good access to vinylicido andb-gluco synthons which
may be converted into uronic acid by a sequence involving a new aldehyde oxidatiorCIRRBA in aqueous
solution. © 2000 Elsevier Science Ltd. All rights reserved.
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Glycosaminoglycans (GAGSs) are linear sulfated polymers of 2-amino sugars and hexuronic acids.
They are essential components of connective tissues and are also present at the cell surface, where they
bind and regulate the activity of various protein¥he well known heparin, but also heparan sulfate
and dermatan sulfate, are GAGs in which the hexuronic moiety is makidyronic acid. Synthetic
oligosaccharide fragments are precious tools to study GAG/protein interatiisims)t L-idose orL-
iduronic are not readily accessible from natural sources. The preparatisinofsynthons is thus a key
point in GAG oligosaccharide synthesis and there is a constant need for their efficient pregaraion.
dialdose2 has never been considered as a precursoritito compounds, since the addition of Grignard
reagents onto dialdose derivatives liRavas reported to exhibit low diastereofacial selectiditywe
however, undertook a study of the addition of masked carboxylate nucleophizdemling confident
that reagents or reaction conditions favouring_aido selectivity might be found (Scheme 1).

We began our investigations with vinylic organometallic reagents, since an alkenic moiety may be a
good precursor to a carboxylic function. As reported, the addition of vinylmagnesium brom@eon
Et,O gave arL-ido 3ato D-gluco4aratio of around 60/40,and variations in the reaction temperature
or solvent did not result in significant changes in the diastereoselectivity (Table 1). We then turned to
other vinylic organometallic reagents but, neither divinyl2imor vinyllithium® led to an increase of
the proportions of thep-gluco stereomef, while the vinyl cerium reageftled only to degradation
of the starting material. Due to the furanose ring conformational flexibility and various chelation
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possibilities, the stereochemical outcome of organometallic reagent additions on dialdose derivatives
like 2 are very difficult to predict, and sterical factors have been shown to be of major importance in the
catalyzed addition of allylsilanéswe thus decided to examine the addition of the bulkier carboxylic acid
equivalents 2-furyllithiurd andtris-(phenylthio)methyllithium:° We found that the.-ido diastereomer
proportion increased with the steric bulk of the nucleophile (Table 1, entry 7, 9 and 10), and were pleased
to find that the reaction was totally stereoselective with (R@Bj)!! giving compound3c as the sole
product in 92% yield?

Table 1
Entry Organometallic reagent Solvent Temperature | L-ido/D-gluco ratio® | Isolated yicldb
1 CHp=CHMgBr EtrO -40°C 56/44 78%
2 CH>=CHMgBr Et,O 20°C 59/41 93%
3 CH,>,=CHMgBr Toluene 20°C 64/36 85%
4 CH»=CHM¢ClI | Toluene 20°C 50/50 90%
5 (CHp=CH)2Zn | Etr,O 0°C 42/58 n.d.
6 CH»=CHCeCl» EtrO -78°C - degradation
7 CHp=CHLi ‘ EpO 0°C 26/74 42%
8 CH>=CHLIi EtpO + TMEDA 0°C 37/63 59%
9 2-furyllithium THF 0°C 60/40 _82%
0| (PhS)3CLi THF -78°C 100/0 92%

a)Determined in the '3C NMR spectra of the crude reaction mixture.” b) After separation of both diastereomers
by flash chromatography.

The totally stereoselective addition of (PBSLi is a key step in the short preparation of syntl®n
(Scheme 2). Orthothioesters were previously converted to the corresponding methyl esters using mercuric
salts as catalyst$ but we found that the much less toxic copper salts mixture @@ allows
the same transformation in even better yields. Methyl estaas thus prepared in 94% froBc,16
instead of 85% with mercuric salts. The furano derivativeas then converted into its acetylated pyrano
counterpars, a useful synthon in which position 3 is already differentidt®2The overall yield of this
new preparation is 65% from commercial diacetone gludosghereas previously reported yields are
in the range of 25 to 30%# 22 making our strategy the most attractive access to the usetiironyl
synthon8.

We have recently prepared a combinatorial library of GAGs sulfo-forms in which the hexuronic acid
was restricted ta-glucuronic acid-’ In order to obtain libraries encompassing the whole of GAGs
molecular diversity we also needed to introdueiuronic acid in the oligosaccharidic framework. We
thus decided to take advantage of the possibility to prepasmd4ain an equimolar ratio (Table 1, entry
4) to synthesize-ido andDb-gluco synthons having the same protecting group pattern and thus suitable
for GAGs combinatorial syntheses. CompouBdand4awere easily separated by flash chromatography
and further converted to their acetylated pyrano counterfaxtsl10 (Scheme 3).
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Compound® and10 are newL-iduronyl andb-glucuronyl synthons, in which a double bond is used

as a carboxylic acid precursor, and preliminary works have shown that they may be transformed into
efficient glycosyl donors. Their alkenic moiety may be easily converted into a carboxymethyl function

using a three-step protocol involving a new aldehyde oxidatiorms@PBA in aqueous solutidf
(Scheme 4). Aldehyd#l, generated by ozonolysis 8followed by reductive workup, was thus oxidized
into a free carboxylic acid which was further esterified into compo8nd 77% overall yield. This

‘double bond’ approach is thus an attractive alternative, in GAGs syntheses, to the use of uronic acids

which are always prone to-elimination or epimerisation in basic conditions.
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The 3:0-benzyl-1,20-isopropylidene- -D-xylo-dialdose2 is thus a versatile precursor of usefuido
and D-gluco synthons for GAGs fragments synthesis. Our new stereoselective access tmtimenyl
synthon8 is a keystone in the synthesis of heparin typesgmmetric neoconjugaté8while the alkenic
uronyl synthon® and10 are currently used for the preparation of combinatorial libraries-igfuronyl

andb-glucuronyl containing GAGs.
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